Лекция 3.

Тема 1. Механические колебания. Дифференциальные уравнения колебательного движения

3.1. Виды и признаки колебаний

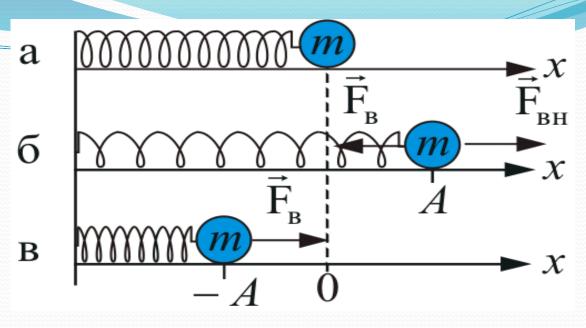
В физике особенно выделяют колебания двух видов – механические и электромагнитные и их электромеханические комбинации, поскольку они чрезвычайно актуальны для жизнедеятельности человека.

Опр. Колебательное движение (или просто колебание) – это движение, повторяющееся в течении времени и величины, описывающие его меняются на противоположные.

Пример. Колебания пружинного маятника

Закон Гука

$$F_{\rm B} = -kx$$



x = 0 - положение равновесия;

 $F_{\rm BH}$ – внешняя растягивающая сила;

 $F_{\scriptscriptstyle
m B}$ – возвращающая сила;

А – амплитуда колебаний.

k - жесткостью пружины.

Знак минус означает, что возвращающая сила, всегда противоположна направлению перемещения *х*

Из приведенного примера следуют три признака колебательного движения:

- •повторяемость (периодичность) движение по одной и той же траектории туда и обратно;
- •ограниченность пределами крайних положений;
- •**действие силы**, описываемой функцией F = -kx.

Опр. Периодические колебания – колебания, при которых наблюдается изменение значения физических величин, изменяющихся через равные промежутки времени. f(t) = f(t + nT)

• Простейшим типом периодических колебаний являются так называемые гармонические колебания.

- Любая колебательная система, в которой возвращающая сила прямо пропорциональна смещению, взятому с противоположным знаком (например, F = -kx), совершает гармонические колебания.
- Саму такую систему часто называют гармоническим осциллятором.

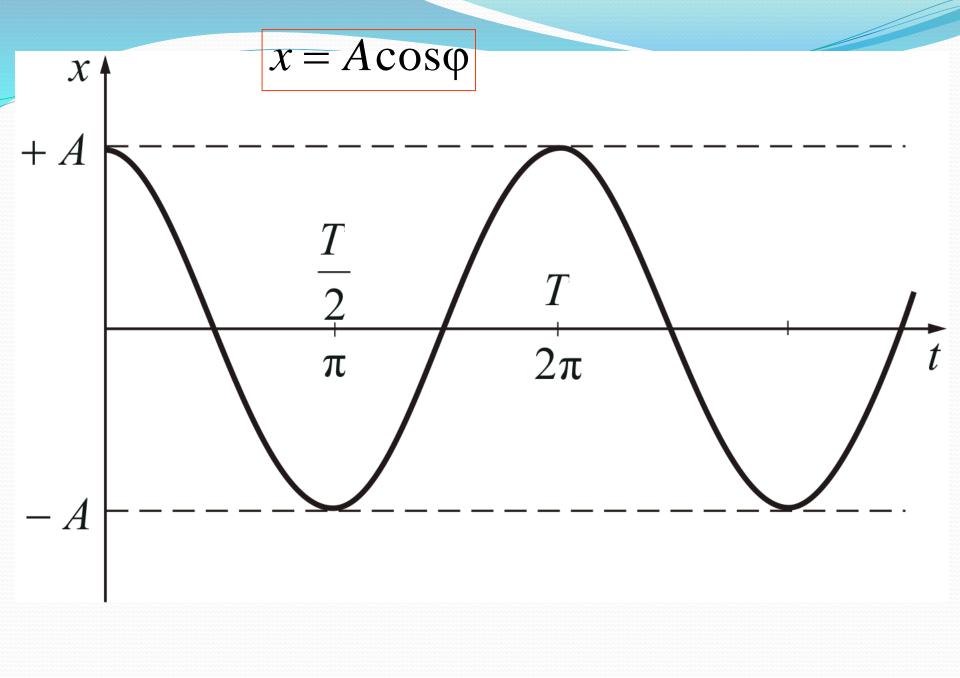
Рассмотрение гармонических колебаний важно по двум причинам:

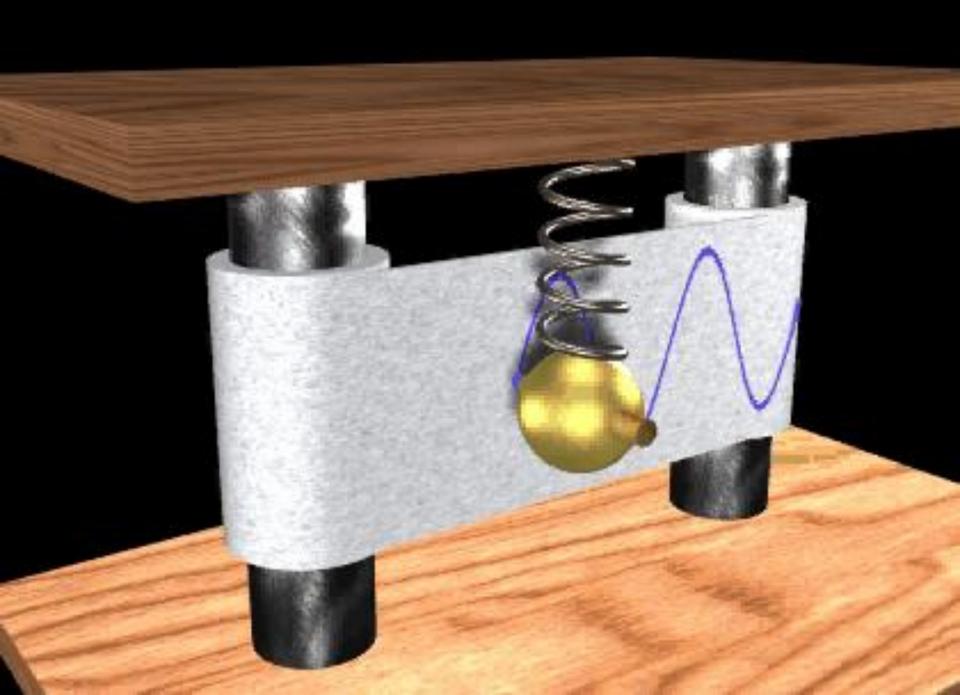
- колебания, встречающиеся в природе и технике, часто имеют характер, близкий к гармоническому;
- различные *периодические процессы* (повторяющиеся через равные промежутки времени) можно представить как наложение гармонических колебаний.

Опр. Гармонические колебания – колебания, описываемые законами синуса или косинуса называются

$$x = A\cos\varphi$$
 или $x = A\sin\varphi$

Здесь синус или косинус используются в зависимости от условия задачи, A и φ – параметры колебаний, которые мы рассмотрим ниже.





1.2. Параметры гармонических колебаний

Опр. Смещение - расстояние колеблющегося тела от положения равновесия до точки, в которой находится груз в данный момент времени (x).

Опр. Амплитуда - максимальное смещение – наибольшее расстояние от положения равновесия (A).

Опр. Частота колебаний \nu определяется, как число полных колебаний в 1 секунду. Частоту, измеряют в герцах (Гц) или с⁻¹: 1 Гц = 1 колебание в секунду.

олеоании в гескули, u = 1 колебание в секунду. $v = \frac{1}{T}$

Опр. Период колебаний – минимальный промежуток времени, по истечении которого повторяются значения всех физических величин, характеризующих колебание

$$T = \frac{2\pi}{\omega_0} = \frac{1}{\nu}$$

Опр. Циклическая (круговая) частота – число полных колебаний за 2π секунд (ω_0).

$$\omega_0 = 2\pi v$$

<u>Частота и период гармонических колебаний не зависят</u> от амплитуды.

Смещение описывается уравнением

$$x = A\cos(\omega_0 t + \varphi)$$

тогда, по определению:

скорость
$$v_x = \frac{dx}{dt} = -\omega_0 A \sin(\omega_0 t + \varphi)$$

ускорение
$$a_x = \frac{dv_x}{dt} = -\omega_0^2 A \cos(\omega_0 t + \varphi)$$

$$\omega_0 A = \upsilon_m - амплитуда скорости;$$

$$\omega_0^2 A = a_m$$
 – амплитуда ускорения.

1.3. Графики смещения, скорости и ускорения

Уравнения колебаний запишем в следующем виде:

$$\begin{cases} x = A\cos(\omega_0 t + \varphi_0) \\ \upsilon_x = -\upsilon_m \sin(\omega_0 t + \varphi_0) \end{cases}$$

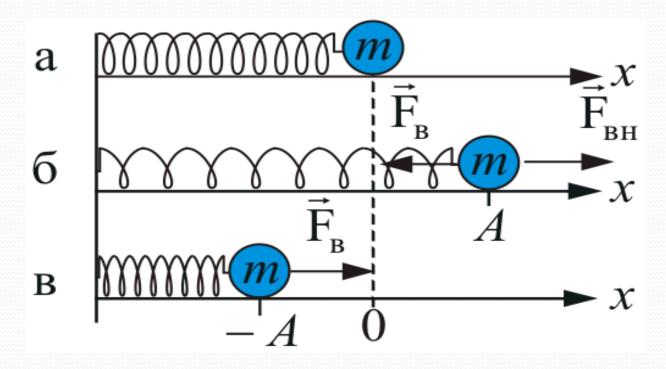
$$\begin{matrix} a_m \\ \upsilon_m \\ A \\ 0 \\ -A \\ -\upsilon_m \\ -a_m \end{matrix}$$

$$\begin{matrix} a_x = f(t) \\ v_x = f(t) \\ x = f(t) \end{cases}$$

Выводы:

- •скорость колебаний тела максимальна и равна амплитуде скорости в момент прохождения через положение равновесия (x = 0).
- При максимальном смещении ($x = \pm A$) скорость равна нулю.
- Ускорение равно нулю при прохождении телом положения равновесия и достигает наибольшего значения, равного амплитуде ускорения при наибольших смещениях.

1.4. Энергия гармонических колебаний



Потенциальная энергия тела *U*, измеряется той работой, которую произведет возвращающая сила

$$F_{x} = -kx$$

•Потенциальная энергия

$$U = \frac{kx^{2}}{2} = \frac{1}{2}kA^{2}\cos^{2}(\omega_{0}t + \phi)$$

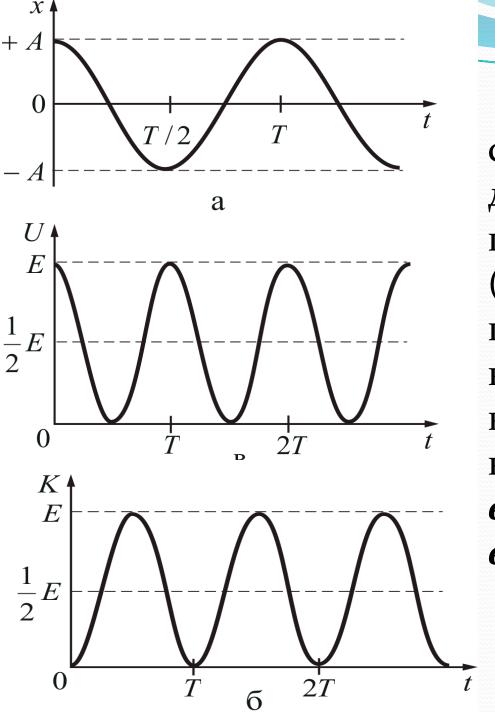
•Кинетическая энергия

$$K = \frac{mv^2}{2} = \frac{1}{2}m\omega_0^2 A^2 \sin^2(\omega_0 t + \phi)$$

• Полная энергия:

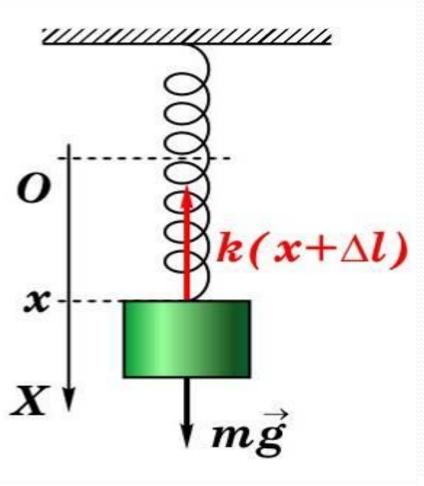
$$E = U + K = \frac{1}{2}m\omega_0^2 A^2$$
 или $E = \frac{1}{2}m\omega_0^2 A^2 = \frac{1}{2}kA^2$

Полная механическая энергия гармонически колеблющегося тела пропорциональна квадрату амплитуды колебания.



колебаниях При совершающихся ПОД действием потенциальных (консервативных) происходит переход кинетической энергии потенциальную наоборот, но их сумма любой момент времени постоянна.

1.5. Гармонический осциллятор



1. Пружинный маятник — это груз массой *т*, подвешенный на абсолютно упругой пружине с жесткостью *k*, совершающий гармонические колебания под действием упругой силы

$$F = -kx$$

Из второго закона Ньютона F = ma; или F = -kx получим уравнение движения маятника:

$$m\frac{d^2x}{dt^2} = -kx$$
 или
$$\left(\frac{d^2x}{dt^2} + \left(\frac{k}{m}\right)x = 0\right)$$

Решение этого уравнения – гармонические колебания вида:

$$x = A\cos(\omega_0 t + \varphi)$$

Собственная циклическая частота гармонических незатухающих свободных колебаний: \sqrt{k}

$$\omega_0 = \sqrt{\frac{k}{m}};$$

Период гармонических незатухающих свободных колебаний: $T = 2\pi \sqrt{\frac{m}{\iota}}$

Вывод:

свободные незатухающие колебания описываются дифференциальным уравнением:

$$\frac{d^2x}{dt^2} + \omega_0^2 x = 0$$

Решение данного уравнения – уравнение колебательного движения:

$$x = A\cos(\omega_0 t + \varphi_0)$$

1.6. Свободные затухающие механические колебания

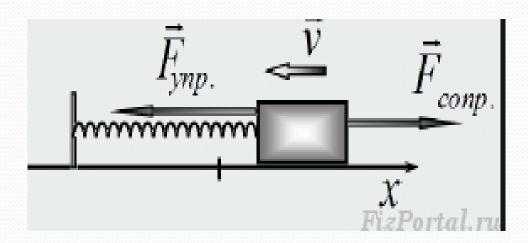
Все реальные колебания являются затухающими. Энергия механических колебаний постепенно расходуется на работу против сил трения и амплитуда колебаний уменьшается.

Сила трения (или сопротивления)

$$\vec{F}_{rp} = -r\vec{\upsilon}$$

где r – коэффициент сопротивления,

 $ec{oldsymbol{\upsilon}}$ – скорость движения



$$ma_x = -F_x - F_{mp._x}$$

$$ma_x = -kx - rv_x$$

где kx – возвращающая сила, rv_x – сила трения.

$$\frac{d^2x}{dt^2} + \frac{r}{m}\frac{dx}{dt} + \frac{k}{m}x = 0$$

Введем обозначения $\frac{r}{2m} = \beta$; $\frac{k}{m} = \omega_0^2$

$$\frac{k}{m} = \omega_0^2$$

$$\frac{d^2x}{dt^2} + 2\beta \frac{dx}{dt} + \omega_0^2 x = 0$$

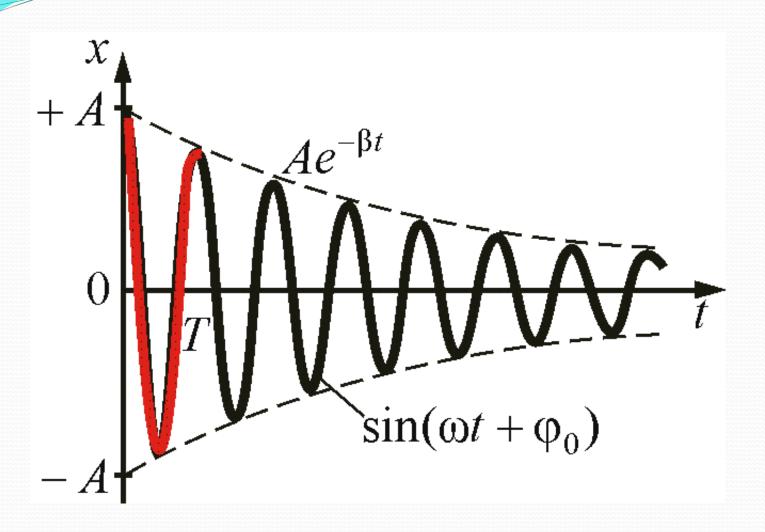
Решение уравнения имеет вид

$$x = A_0 e^{-\beta t} \cos(\omega t + \phi)$$

Частоту затухающих колебаний $\, \omega. \,$

$$\omega = \sqrt{\omega_0^2 - \beta^2} \qquad \beta \le \omega_0$$

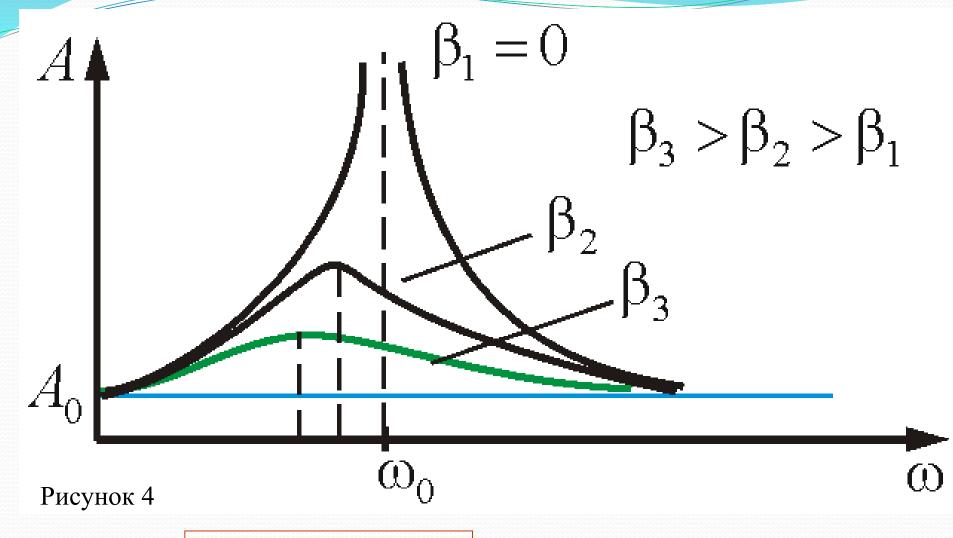
Период затухающих колебаний
$$T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\omega_0^2 - \beta^2}}$$



$$\chi = \beta T$$

$$\beta = \frac{1}{\tau}$$
.

$\omega = \omega_0$ $A \to \infty$ - явление резонанса



$$\omega_{\rm \delta \mathring{a}\varsigma} = \sqrt{\omega_0^2 - 2\beta^2}$$

– резонансная частота

$$\omega_{\text{рез}} = \sqrt{\omega_0^2 - 2\beta^2}$$
 — резонансная частота.

Опр. Резонанс – физическое явление, при котором наблюдается возрастание амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте колебаний

Спасибо за внимание!